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Abstract — Nonconforming Point Interpolation Method 

(NPIM) is a meshless method that has been applied to 

problems in Mechanics in the last years. In this paper, we 

investigate NPIM in Electromagnetism. We present its 

formulation and shape functions, which are generated by the 

radial point interpolation method with polynomial terms. The 

numerical results are compared to the ones obtained by the 

Finite Element Method (FEM). 

I. INTRODUCTION 

Meshless (or meshfree) methods are an alternative to 

traditional numerical techniques such as the Finite Element 

Method (FEM) and the Finite Difference Method (FDM). 

In general, meshfree methods do not use a mesh for shape 

function generation neither for integration of the weak form 

[1]. If a mesh is yet necessary then it is called a background 

mesh (or background grid) and it is used only for 

integration, leading to weaker requirements on its quality. 

There are several meshless methods developed so far [1] 

such as the Smoothed particle hydrodynamics (SPH), the 

Element-free Galerkin (EFG), the Meshless Local-Petrov 

Galerkin (MLPG), the Point Interpolation Method (PIM) 

family, and others. Under the PIM family we can cite the 

Local Point Interpolation Method (LPIM) [1], the 

Conforming Point Interpolation Method (CPIM) [1], and 

the Nonconforming Point Interpolation Method (NPIM) [1]. 

Most of those methods have already been applied to 

electromagnetic problems. EFG might be the most used 

method since it was one of the first meshless methods to 

arise. In [2] EFG is applied to a three-dimensional 

electrostatic problem. In [3] MLPG is used to solve a 

microwave guide problem. LPIM in [4] solves a problem 

that involves Eddy-Current.  

As NPIM has not yet been tested with electromagnetic 

problems, it is important to evaluate its performance on 

electromagnetic field computation. For so, in this paper we 

use NPIM to solve two-dimensional static problems. We 

introduce the PIM shape function generation, the problem 

mathematical formulation and the weak form integration for 

NPIM in the following section. Numerical results are then 

presented and compared against FEM. It is shown that the 

method converges and that the results have the same 

numerical quality as the ones generated by FEM.  

II. MATHEMATICAL FORMULATION 

A. Point Interpolation Method 

The Point Interpolation Method was proposed to replace 

Moving Least Squares (MLS) approximation for creating 

shape functions. The major advantages of PIM are the 

excellent accuracy in function fitting and that the created 

shape functions possess the Kronecker delta function 

property, which allows simple imposition of essential 

boundary conditions as in the conventional FEM [1]. 

The approximation properties lie on the basis functions 

used for the shape functions construction. The present work 

uses Radial Point Interpolation with polynomials (RPIMp) 

in basis, which means that both radial basis functions (RBF) 

and polynomial terms are used. 

The approximation ����� at a point � is given by 
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where � is the number of nodes in the support domain of �, 
� is the number of polynomial terms used in basis, 
	’s are 
the coefficients for radial basis �	��� and �
’s the 

coefficients for polynomials terms �
���. The coefficients 

	 and �
 are determined enforcing interpolation passing 

through all the � nodes within the support domain [1]. 

An interesting characteristic of RPIMp is the assurance 

that the shape functions will always exist and that 

consistency is achieved according to the polynomial basis 

[1]. On the other hand, RPIMp functions are not compatible 

because no weight function (as in MLS) is used in their 

construction. The approximation thus can be discontinuous 

when the support domain changes while the point of 

interest moves. The nodes in the support domain are 

updated suddenly, meaning that when the nodes are 

entering or leaving the support domain, they are actually 

“jumping” into or out of the support domain. Therefore, the 

function approximated using the RPIMp shape functions 

can jump [1]. In MLS, this “jumping” is avoided by the 

presence of the weight function that makes the nodes enter 

or leave the moving support domain in a smooth manner. 

Because the PIM shape functions are not compatible, 

depending on the energy principles used in the method 

formulation, PIM can be conforming or nonconforming [1]. 

When constraints are used to enforce compatibility, the 

method will be conforming. NPIM ignores the 

compatibility issues and impose no constraints in the 

mathematical formulation which makes it nonconforming. 

Nevertheless, NPIM converges to the exact solution even 

with compatibility issues [1]. 

B. Weak Form 

Electrostatic problems can be described by the 

following boundary value problem: 
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where � is the electrostatic potential, � is the electric 
permittivity, � is the space charge density, � is the electric 
potential imposed on the Dirichlet boundary �  and " is the 
value imposed on the Neumann boundary ��. 

Using the weighted residual method with an arbitrary 

test function #, we obtain from (2) and (3) the following 

weak form 
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Applying the Galerkin method on (4), we get the 

equation system in matrix form 
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with ,	 as the PIM shape functions created by manipulation 

of (1) as described in [1]. It should be noted that no method 

to impose essential boundary conditions is used once PIM 

shape functions have the Kronecker delta property. Also, 

there are no constraints to enforce compatibility in (6). We 

can see that EFG and NPIM are quite similar and they 

basically diverge in the shape function generation. EFG 

creates shape functions using MLS, and they are compatible 

but do not have Kronecker delta property, so essential 

boundary conditions must be enforced in the weak form (4). 

On the other hand, in NPIM essential boundary conditions 

are naturally imposed but its shape functions are not 

compatible. 

C. Integration 

The integration in NPIM is done with a background grid 

(or mesh) over the domain in the same way as in EFG. The 

cell grid can be of any shape but rectangular or triangular 

are usually adopted due to their simplicity. The integration 

process is often carried out with Gauss quadrature over 

each cell. In this paper, rectangular cell grid is used. 

III. NUMERICAL RESULTS AND CONCLUSIONS 

The accuracy of the method was investigated on an 

electrostatic problem shown in Fig. 1. 
 

 
Fig. 1. Electrostatic problem geometry. Domain is 5 x 10. 

 

To solve the problem, it is used 21 x 41 equally spaced 

nodes. The background grid has 20 x 40 cells. Integration is 

performed with 16 and 5 quadrature points per cell for 

domain and boundary integrations, respectively. Linear 

polynomials and cubic spline RBF [1] are employed in 

RPIMp. The analytical solution is 
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The meshless method framework presented in [5] is 

used to implement the method and Fig. 2 shows the solution 

for NPIM. We can see that the method approximates well 

the analytical solution, with a relative error order of 10
-5
. 

The convergence rate is also found and compared against 

FEM (Fig. 3). Both methods have the same convergence 

rate (about 2.0), although NPIM is nonconforming. On the 

other hand, NPIM presented better accuracy for all used 

nodes distributions, which started from 66 up to 51681 

equally spaced nodes. 
 

 
Fig. 2. (a) NPIM solution ��, (b) analytical solution �-, and (c) relative 
error surface. 

 

We conclude that NPIM is a good alternative to solve 

electromagnetic problems and it has a simple 

implementation given its formulation and shape function 

Kronecker delta property characteristic. NPIM shows 

similar accuracy to FEM and converges to the exact 

solution. 

 
Fig. 3. Error norm for NPIM and FEM. h is the distance among nodes. The 

convergence rate is calculated using the last points. 
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